

Advanced Neutron Absorber Development

Bill Hurt

NSNFP Spent Fuel Technical Exchange Washington, DC January 2004

Providing for safe, efficient disposition of DOE spent nuclear fuel

Outline

- Ni-Cr-Mo-Gd Alloy Development
- Results
 - Microstructural Features and Corrosion Performance Studies
 - Plate Mechanical Properties
 - Welding Trials
 - Criticality Safety (Neutron Absorption) Experiments
- ASME/ASTM Status
- Summary

Project Overview

Problem:

- Some types of USDOE spent nuclear fuel (SNF) contain highly enriched uranium
- Final disposition of this SNF the repository may require criticality control during the regulatory period

Approach:

• SNF will be packaged in standardized canister with baskets fabricated from thermal neutron absorbing materials

Benefits:

- DOE SNF is critically safe under fully flooded conditions
- Decreased number of SNF packages going to repository with reduced handling and materials costs.

Project Summary

- ASTM Material Specifications for Ni-Cr-Mo-Gd Alloy is in final approval stage
- Developing complete mechanical properties dataset
- Continuing mechanical properties/ microstructure/corrosion/weldability investigations
- Continuing hot working evaluations
- Initiating ASME code actions

Tasks

- Develop a nickel based corrosion resistant alloy with a gadolinium addition. Gadolinium has a high thermal neutron absorption cross section.
- Determine effect of alloy microstructure on corrosion performance, mechanical properties, and thermal neutron absorption
- Develop an American Society for Testing and Materials standard
- Perform mechanical properties measurements for acceptance in Section II of the ASME Code

Project Workflow

Heat Chemistries

Element	Heat M322 VIM/VAR	Heat M326 VIM/VAR	Heat M327 VIM/VAR	HVO 0182 VIM Not reported	
Al	0.005	Not reported	Not reported		
C	<0.001	0.006	<0.001	0.031	
Co	<0.001	0.009	0/003	Not reported	
Cr	14.93	14.71	21.01	14.71	
Fe	0.028	0.025	0.0032	Not reported	
Gd	2.38	2.00	1.98	1.5	
Mg	<0.001	0.002	0.002	Not reported	
Mn	< 0.001	<0.001	<0.01	0.30	
Mo	14.71	14.53	14.32	14.76	
Ni	Balance	Balance	Balance	67.77	
S	<0.001	<0.001	0.002	0.0014	
Si	<0.01	0.013	0.018	0.12	

Typical as-cast microstructure of Ni-Cr-Mo-Gd alloys

- Composition of gadolinide was similar for a range of melt chemistries -No Gd observed in matrix
- Matrix composition can be controlled by adjustment of bulk chemistry

Microstructural Features and Corrosion Performance

- The Ni-Cr-Mo alloys are resistant to corrosion by oxidizing and reducing environments. Alloy 22 (waste package outer barrier material) is an alloy of this type.
- There is no solubility of Gd in austenite matrix of Ni-Cr-Mo alloys
- A Gd rich, eutectic, secondary phase forms (Ni, Cr)₅Gd
- This second phase may be selectively attacked in some projected YMP in-drift environments
- The two phase structure differentiates these alloys from other Ni-Cr-Mo alloys

Hot working of up to 2.4 wt% Gd alloy ingots successful VAR Ingot-as cast Plate (L-S orientation)

- Gadolinide distribution evolves during hot working
- Some surface cracking was experienced
- Differences between various heats have been observed
- Further optimization of hot working procedures is underway

LOM of Heat M327

Immersion Test Results

Conditions-Heat M322

- J-13, 30°C
- 6720 hoursCorrosion rate20 nm/yr

Conditions-Heat M322

- 50X J-13, 30°C
- 5424 hours
 Corrosion rate
 89 nm/yr

Notes:

- $1 \text{ nm} = 1 \times 10^{-9} \text{ m}$
- Alloy 22 rate Is 15 nm/yr in J-13

Electrochemical Corrosion Test Results

- Potentiodynamic test results show acidic chloride solutions and J-13 will initially remove gadolinide (Ni,Cr)₅Gd and Gadolinium Oxide(Gd₂O₃) that intersect the surface.
 - Alloy will then repassivate and experience a very low corrosion rate
 - Localized corrosion performance is better than a borated stainless steel in acidic, aggressive environments
 - General corrosion performance should approach that of alloy C-4
 - Accelerated test

Mechanical Properties of Recent Heats

	Heat	Orientation	YS (ksi)	UTS (ksi)	Elong. (%)	RA (%)	Impact Energy (ft-lb)	Lateral Exp (inch)
	326	Trans	60.0	104.7	22.3	18.6	14.2	
Straight Rolled	(1200°C/4hr/WQ)	Long	60.9	118.5	46.1	35.2	27.3	
	327	Trans	61.4	108.1	24.1	21.0	16.3	
	(1200°C/4hr/WQ)	Long	60.7	115.7	51.1	38.5	33.2	
	HV0182	Long*	80.7	125.0	39.3	35.3	19.7	0.015
Cross	(As Rolled)	Trans*	86.3	116.7	22.7	21.3	15.7	0.012
Rolled	HV0182	Trans*	54.8	104.0	29.0	22.0	23.3	0.020
	(1093°C/4hr/WQ)	Long*	53.8	114.3	44.3	35.3	38.7	0.033

^{*}Relative to primary rolling direction

Multi-axis forging Rolling temperature Reduction per pass Cross rolling Post rolling annealing

⁻ Optimization of hot working schedules appears to be successful - current evaluations include:

Mechanical Properties - Comparison with BSS

- Correlation for borated stainless steels based on data for both A and B Grades

Range of current Gd alloy values

- Higher strength of Ni alloy matrix may contribute to disparity
- However, it seems likely that further improvements in alloy cleanliness and gadolinide distributions will significantly improve properties

Criticality Safety (Neutron Absorption) Experiments

- Experiments were performed at the Los Alamos National Laboratory Criticality Experiments Facility
- The experiment consisted of interlaying highly enriched uranium foils with polyethylene and Gd alloy plates that simulate a fully moderated configuration in a critical system
- Initial measurements and calculations suggest that the negative worth of Gd alloy plates is about 8.8\$ of reactivity.
- Calculated negative worth of an equivalent volume of borated stainless steel plate (1.7% B) is 6.4\$ of reactivity.
 - Ni-Cr-Mo-Gd alloy is a more effective thermal neutron absorber
- Computational results tend to agree well with experimental results

Gd Alloy Plates in Experimental Setup

Gd alloy plate and polyethylene insert

Criticality Test Setup

Welding Trials and Weldability

E-beam weld

GTA weld fusion boundary

- Initial electron beam and gas-tungsten arc welding trials are promising
- Varestraint tests indicate response is favorable in comparison with other commonly welded Ni-based alloys
- Behavior is commensurate with melting temperature range

Codes and Standards Status

- ASTM Specification for 2 wt% N06455 type alloy balloted at main committee (ASTM B02-Non-Ferrous Alloys):
 - Ballot closes on January 23, 2004
 - Expected to be published in ASTM Volume 2.04 in May 2004
- Alloy neutronics measured (at LANL) and approved values incorporated into International Handbook Of Evaluated Criticality Safety Benchmark Experiments
- ASME Code Case submission awaiting hot working trials and finalization of data package
 - Submission expected by end of FY04

Summary

- Ni-Cr-Mo-Gd alloys can be made with conventional ingot metallurgy techniques.
- The alloys will meet all performance requirements
 - Mechanical properties will meet ASME requirements in as-welded condition (transportation issue)
 - Criticality control during regulatory period is assured based on corrosion tests
 - Thermal neutron absorption performance of prototype alloys is exceptional and consistent with published data